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Electron-Transfer Photooxidation. 3. 
Detection of Radical-Ion Intermediates in the 
Cyanoaromatic-Sensitized Photooxidation 
of trans- and c/s-Stilbene1 

Sir: 

Radical ions have been proposed as intermediates in a 
number of photochemical systems,2 including photooxidation 
reactions involving cyanoaromatic sensitizers and electron-rich 
substrates.3'4 The proposed mechanism for these photoox­
idation reactions (Scheme I) involves electron transfer from 

Products 

Sens + O2" 

the substrate to the excited singlet sensitizer; the radical anion 
of the sensitizer then reacts with oxygen to produce superoxide 
ion, which reacts with the substrate radical cation to produce 
the oxidation products.5 

We now report the direct observation of the radical-ion in­
termediates in the photooxidation of/ran-y-stilbene (TS) and 
ris-stilbene (CS) using 9,10-dicyanoanthracene (DCA) and 
9-cyanoanthracene (CA) as sensitizers. The absorption spectra 
were obtained by laser flash photolysis8 using a Nd-YAG laser 
as the excitation source at 355 nm and monitoring with a xenon 
flash lamp. Figure 1 shows the absorption spectrum (1 /as after 
laser pulse) produced from 2.0 X l O - 4 M CA and 0.05 M TS 
in N2-saturated dry CH3CN. The absorption (Xmax 470 nm) 
is very similar to that of TS+- previously published.9~" The 
spectrum also shows an absorption at Xmax 587 nm that cor­
responds well to the absorption spectra of CA -- .1 2 The tran­
sient decay rate at 587 nm increases on going from N2- to air-
to oxygen-saturated solution. In N2, the decay appears to be 
second order, while, in air and O2, there is an initial fast com­
ponent and a slower decay at longer times. In contrast, the 
decay rate at 470 nm shows mixed first- and second-order ki­
netics. The decay rate under air is equal to or only slightly 
faster than that under N 2 and is larger under O2 (Figure 2). 
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Figure 1. Absorption spectrum of 0.05 M TS + 2.0 X 10-4M CA in 
CH3CN. 1.0 MS after flash. 
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Figure 2. (a) Transient decay of TS+- at 470 nm. (b) Transient decay of 
CA - -a t 587 nm. 

The same spectrum for TS+- is observed with DCA as sen­
sitizer. However, the spectrum is broadened because it is su­
perimposed on the broad absorption of DCA-- (Xmax 480 
nm).12 Oxygen saturation of the sample removes DCA-- and 
reveals the true TS+- spectrum (Figure 3). Continuous irra­
diation (400-450 nm) of the same solution in an ESR cavity13 

produces an ESR signal (g = 2.0170) with a hyperfine pattern 
that corresponds well to that of the DCA-- ESR spectrum 
reported by Happ and Janzen.14 The same ESR spectrum has 
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Figure 3. TS+- absorption spectrum from 2.0 X 10~5 M DCA + 0.05 M 
TS, 1 ^s after laser pulse, under N2 (- - -) and air (—). 

been observed by Schaap et al.15 using DCA-sensitized pho-
tooxidation of a variety of electron-rich substrates. However, 
in neither our experiments nor Schaap's15 has an ESR spec­
trum of the radical cation been observed. 

To further substantiate the assumption that the absorption 
at 470 nm is caused by TS+-, 1,2,4-trimethoxybenzene (TMB) 
and tetraphenylethylene (TPE) were used to trap it. Based on 
their half-wave potentials16 (TMB, 1.12;I7TPE, 1.33;4bTS, 
1.51 V4b), electron transfer from these compounds to TS+-
should be diffusion controlled.18 Farid et al.3 and Foote and 
Eriksen6 have shown that compounds with lower oxidation 
potential than the substrate quench the formation of elec­
tron-transfer oxidation products, presumably by reducing the 
radical cation of the substrate. In our experiment, the ab­
sorption at 470 nm decreased and the transient decay rate in­
creased linearly with the concentration of TMB. A rate con­
stant of 1.2 ± 0.1 X 1010 M - 1 s - 1 for the electron transfer was 
derived, consistent with the rate expected for an exothermic 
electron transfer.4bJ8 

The spectrum obtained by adding 1.0X10-3 M TPE to the 
DCA-TS solution in air-saturated MeCN (Figure 4) shows 
a decrease in the 470-nm band and a new peak at 500 nm that 
corresponds to TPE+-.9 In the absence of TS, no TPE+- ab­
sorption is observed because the TPE concentration is too low 
to trap the short-lived (15 ns)4b-19 1DCA*, although it is high 
enough to trap the longer-lived TS+-. 

The DCA-sensitized oxidation of CS shows absorption 
maxima at 475 and 515 nm. The 515-nm absorption corre­
sponds to CS+-,9-10 while that at 475 nm is probably that of 
TS+-. It has been reported10 that CS+- photoisomerizes to 
TS+-.20 When CA is the sensitizer for CS, no absorption is 
observed. A reasonable explanation is that electron transfer 
from CS (E1n = 1.63 V)16 to 1CA (£ , / 2 = 1.46 V.)4b'16 is 
energetically unfavorable. 

The spectral evidence above provides strong confirmation 
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Figure 4. Absorption spectrum from 3.0 X 10-4 M DCA + 0.05 M TS + 
1.0XlO-3M TPE, 1 Ms after laser pulse, in air-saturated CH3CN (—). 
- - - is the same as in Figure 3 under air, no TPE. 

for the suggestion that radical ions are intermediate in the 
cyanoaromatic-sensitized photooxidation. It also suggests that 
oxygen reacts very rapidly with the sensitizer radical anion, 
most likely forming C^--. The small change in the lifetime of 
the radical cation in going from N2- to air-saturated solution 
implies that direct reaction of oxygen with the radical cation 
(Barton mechanism)21-22 is comparatively slow under air. 
However, it may be somewhat more important under O2, 
where there is a considerable decrease in the lifetime of the 
radical cation. Thus, although other mechanisms for the for­
mation of oxidation products are not ruled out, the mechanism 
suggested4 is consistent with the observed facts. 
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Phenyl Participation in the Cleavage of 
/3-Phenethyl-Palladium Bonds by Cupric Chloride 

Sir: 

Although oxidative cleavage of transition metal-carbon 
bonds has been studied extensively, '~8 the detailed mechanism 
of such reactions is still unclear. Stereochemical studies on 
oxidative cleavage processes have shown both inversion3-6 and 
retention6,7 of configuration at carbon as well as lack of ste-
reospecificity.1'8 

One oxidative cleavage reaction that has been a matter of 
much speculation is the cupric halide cleavage of palladium-
carbon bonds, in which palladium is replaced by halide.5-8-9 

This cleavage reaction has been proposed to proceed either by 
reductive elimination,10 a radical mechanism,1-8 or an ionic 
mechanism involving nucleophilic displacement at carbon.5-9e 

Budnik and Kochi observed loss of stereochemistry in the cu-
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